\qquad Per \qquad
Mrs. Doolan/Math6

Variables and Expressions

Objective: You will learn the difference between a variable, constant, and coefficient. You will also learn how to evaluate expressions.

Terms:

Expression: a mathematical phase involving constants, variables, coefficients, and operations.

Variable: a quantity that can change or vary. In an algebraic expression, the variable is often written as a letter.

Constant: is a quantity that does not change. In an algebraic expression, the constant is/are the number(s).

Coefficient: is a number used to multiply a variable. For example, in the expression: $2 \mathrm{~m}+5,2$ is the coefficient.

If you know the values of the variables, you can evaluate the expression by replacing the variable with each value. This is known as substituting a value for a variable.

Step 1: Substitute 1 for x

$$
8+1=9
$$

Step 2: Substitute 2 for x

$$
8+2=10
$$

Step 3: Substitute 3 for x

$$
8+3=11
$$

Therefore, $8+\mathrm{x} ; \mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$

Circle the variable.
Star the constant.
Box the operation.
Underline the coefficient.

 : Example \#2: Evaluate the expression for $\mathrm{x}=3,4$, and 5

\mathbf{x}	$\mathbf{1 2}-\mathbf{x}$	$\mathbf{5 x}$
$\mathbf{3}$	9	15
$\mathbf{4}$	8	
$\mathbf{5}$		25

1. Evaluate the following multiplication equation for $x=3,5$, and 6

$$
4 x-3
$$

Circle the variable.
Star the constant.

Box the operation.
Underline the coefficient.
2.

x	
4	
7	$\frac{28}{x}$
28	

Circle the variable.
Star the constant.

Box the operation.
Underline the coefficient.

CHALLENGE:

3. Complete the table for the values given:

Expression:	$\boldsymbol{c}=3, \boldsymbol{d}=5$	$\boldsymbol{c}=2, \boldsymbol{d}=4$	$\boldsymbol{c}=10.5, \boldsymbol{d}=6.1$
$\boldsymbol{c}+\boldsymbol{d}$			
$\boldsymbol{c} \cdot \boldsymbol{d}$			
$\boldsymbol{c}^{2}+\boldsymbol{d}$			
$\boldsymbol{c}^{2}+\boldsymbol{d}^{2}$			
$2 \boldsymbol{c}-2 \boldsymbol{d}$			

Work space:

