_____ Per ____ Mrs. Doolan /Math6

Unit 9 Exploring Surface Area (SA) (11-2)

Objective: to find the surface area of a polyhedron by using a net of the solid.

<u>Face</u>: the flat surfaces of a solid.

Edge: the line where two faces come together.

<u>Vertex</u>: the line where several edges come together.

Polyhedron: a solid whose faces are polygons.

<u>Prism</u>: a polyhedron with two parallel and congruent faces.

<u>Surface Area (SA)</u>: the sum of all face areas.

Net: a 2 dimensional pattern of a 3 dimensional solid.

Remember:

Cube: a 3 dimensional figure with 6 identical square faces.

<u>Rectangular Prism:</u> a 3 dimensional figure whose opposite sides are equal and quadrilaterals.

To determine Surface Area (SA):

- 1. Unfold the shape into its net.
- 2. Count and label the number of faces and state the shape of each figure.
- 3. Using the correct formula, compute the area of each face
- 4. Add all areas together and label as *squared units*.

<u>Step 2:</u> Count and label the number of faces (6) and shape of each face (square).

<u>Step #3:</u> Use your formula to compute the area of each shape:

A = s x s	$A = s \ge s$	A = s x s			
		$A = 5 \ge 5$			
$A = 25 \text{ ft}^2$					

Step #4: Add them all together: $25 + 25 + 25 + 25 + 25 + 25 = 150 \text{ ft}^2$

Step 2: Count the number of faces and label the shape of each face.

Step #4: Add them all together:

3. Use the correct formulas and compute each area: Area of a square: A = s x sArea of a triangle: $A = \frac{1}{2}$ (bh)

<u>Area #1:</u>	<u>A#2:</u>	<u>A#3:</u>	<u>A#4:</u>	<u>A#5</u>
A = s x s	$A = \frac{1}{2} (bh)$			
$A = 5 \ge 5$	$A = \frac{1}{2}(5 \times 6)$			
$A = 25 \text{ in}^2$	$A = 15 \text{ in}^2$	$A = 15 \text{ in}^2$	$A = 15 \text{ in}^2$	$A = 15 \text{ in}^2$

4. Add all areas together and label as squared units: $A = 25 \text{ in}^2 + 15 \text{ in}^2$ $A = 85 \text{ in}^2$

1. Solve for SA of this cube:

2. Solve for SA of this rectangular prism:

3. 2. Solve for SA of this square based pyramid:

